aplikacja Matura google play app store

Mechanika i budowa maszyn - studia I stopnia

kierunek studiów: Mechanika i budowa maszyn
poziom kształcenia: Studia I stopnia inżynierskie

I. WYMAGANIA OGÓLNE
Studia pierwszego stopnia trwają nie krócej niż 7 semestrów. Liczba godzin zajęć nie powinna być mniejsza niż 2400. Liczba punktów ECTS (European Credit Transfer System) nie powinna być mniejsza niż 210.

II. KWALIFIKACJE ABSOLWENTA

Absolwenci studiów pierwszego stopnia posiadają podstawową wiedzę i umiejętności konieczne do zrozumienia zagadnień z zakresu budowy, wytwarzania i eksploatacji maszyn. Posiadają gruntowną znajomość zasad mechaniki oraz projektowania z wykorzystaniem nowoczesnych narzędzi obliczeniowych. Absolwenci są przygotowani do: realizacji procesów wytwarzania, montażu i eksploatacji maszyn; prac wspomagających projektowanie maszyn, dobór materiałów inżynierskich stosowanych jako elementy maszyn oraz nadzór nad ich eksploatacją; pracy w zespole; koordynacji prac i oceny ich wyników oraz sprawnego posługiwania się nowoczesnymi technikami komputerowymi.

Absolwenci studiów powinni znać język obcy na poziomie biegłości B2 Europejskiego Systemu Opisu Kształcenia Językowego Rady Europy oraz posiadać umiejętności posługiwania się językiem specjalistycznym z zakresu kierunku kształcenia. Absolwenci powinni być przygotowani do podjęcia studiów drugiego stopnia. Absolwenci są przygotowani do pracy w: przedsiębiorstwach przemysłu maszynowego oraz w innych zajmujących się wytwarzaniem i eksploatacją maszyn; jednostkach projektowych, konstrukcyjnych i technologicznych oraz związanych z organizacją produkcji i automatyzacją procesów technologicznych; jednostkach odbioru technicznego produktów i materiałów, jednostkach akredytacyjnych i atestacyjnych; jednostkach naukowo-badawczych i konsultingowych oraz innych jednostkach gospodarczych, administracyjnych i edukacyjnych wymagających wiedzy technicznej i informatycznej.

III. RAMOWE TREŚCI KSZTAŁCENIA

III.1 GRUPY TREŚCI KSZTAŁCENIA, MINIMALNA LICZBA GODZIN ZAJĘĆ ZORGANIZOWANYCH ORAZ MINIMALNA LICZBA PUNKTÓW ECTS


godziny

ECTS

A. GRUPA TREŚCI PODSTAWOWYCH

345

35

B. GRUPA TREŚCI KIERUNKOWYCH

615

60

Razem

960

95

III.2 SKŁADNIKI TREŚCI KSZTAŁCENIA W GRUPACH, MINIMALNA LICZBA GODZIN ZAJĘĆ ZORGANIZOWANYCH ORAZ MINIMALNA LICZBA PUNKTÓW ECTS


godziny

ECTS

A. GRUPA TREŚCI PODSTAWOWYCH

Treści kształcenia w zakresie:

345

35

1. Matematyki

120


2. Fizyki

60

3. Mechaniki technicznej, wytrzymałości materiałów i mechaniki płynów

165

B. GRUPA TREŚCI KIERUNKOWYCH

Treści kształcenia w zakresie:

615

60

1. Konstrukcji i eksploatacji maszyn oraz grafiki inżynierskiej


2. Nauki o materiałach

3. Inżynierii wytwarzania

4. Termodynamiki technicznej

5. Elektrotechniki i elektroniki

6. Automatyki i robotyki

7. Metrologii i systemów pomiarowych

8. Zarządzania środowiskiem i ekologii

III.3 WYSZCZEGÓLNIENIE TREŚCI I EFEKTÓW KSZTAŁCENIA

A. GRUPA TREŚCI PODSTAWOWYCH

1. Kształcenie w zakresie matematyki

Treści kształcenia: Elementy logiki i teorii zbiorów. Liczby zespolone. Podstawy geometrii analitycznej. Algebra macierzy. Rozwiązywanie układów algebraicznych równań liniowych. Rachunek różniczkowy i całkowy funkcji jednej i wielu zmiennych. Równania różniczkowe zwyczajne. Wstęp do równań różniczkowych cząstkowych. Szeregi liczbowe. Statystyka matematyczna.

Efekty kształcenia – umiejętności i kompetencje: zastosowania aparatu matematycznego do opisu zagadnień mechanicznych i procesów technologicznych.

2. Kształcenie w zakresie fizyki

Treści kształcenia: Dynamika układów punktów materialnych. Elementy mechaniki relatywistycznej. Podstawowe prawa elektrodynamiki i magnetyzmu. Zasady optyki geometrycznej i falowej. Elementy optyki relatywistycznej. Podstawy akustyki. Mechanika kwantowa i budowa materii. Fizyka laserów. Podstawy krystalografii. Metale i półprzewodniki.

Efekty kształcenia – umiejętności i kompetencje: pomiaru podstawowych wielkości fizycznych, analizy zjawisk fizycznych i rozwiązywania zagadnień technicznych w oparciu o prawa fizyki.

3. Kształcenie w zakresie mechaniki technicznej, wytrzymałości materiałów i mechaniki płynów

Treści kształcenia: Redukcja dowolnego układu sił. Równowaga układów płaskich i przestrzennych (wyznaczanie wielkości podporowych). Analiza statyczna belek, słupów, ram i kratownic. Elementy teorii stanu naprężenia i odkształcenia. Układy liniowo-sprężyste. Naprężenia dopuszczalne. Hipotezy wytężeniowe. Analiza wytężania elementów maszyn. Analiza wytrzymałościowa płyt i powłok cienkościennych. Elementy kinematyki i dynamiki punktu materialnego, układu punktów materialnych i bryły sztywnej. Podstawy teorii drgań układów mechanicznych. Statyka płynów. Elementy kinematyki płynów. Równanie Bernoulliego. Przepływy laminarne i turbulentne. Przepływy przez kanały zamknięte i otwarte. Równanie Naviera-Stokesa. Podobieństwa zjawisk przepływowych. Przepływy potencjalne i dynamika gazów. Podstawy mechaniki komputerowej. Zastosowanie technik komputerowych w mechanice.

Efekty kształcenia – umiejętności i kompetencje: rozwiązywania problemów technicznych w oparciu o prawa mechaniki oraz wykonywania analiz wytrzymałościowych elementów maszyn.

B. GRUPA TREŚCI KIERUNKOWYCH

1. Kształcenie w zakresie konstrukcji i eksploatacji maszyn oraz grafiki inżynierskiej

Treści kształcenia: Elementy maszynoznawstwa. Grafika inżynierska. Rzut prostokątny w odwzorowaniu i restytucji elementów przestrzeni. Geometryczne kształtowanie form technicznych z wykorzystaniem wielościanów, brył i powierzchni. Normalizacja w zapisie konstrukcji. Odwzorowanie i wymiarowanie elementów maszynowych. Schematy i rysunki złożeniowe. Graficzne przedstawianie połączeń elementów maszyn. Oznaczanie cech powierzchni elementów. Wprowadzanie zmian. Podstawy teorii konstrukcji maszyn. Wytrzymałość zmęczeniowa i obliczenia zmęczeniowe. Elementy trybologii. Połączenia. Przewody rurowe i zawory. Elementy podatne. Wały i osie. Sprzęgła. Hamulce. Przekładnie mechaniczne. Metody analizy układów kinematycznych. Podstawy napędu hydrostatycznego. Algorytmy projektowania. Bazy danych inżynierskich w budowie maszyn. Komputerowe wspomaganie projektowania maszyn (CAD – Computer Aided Design). Modele systemu i procesu eksploatacji maszyn i urządzeń. Niezawodność elementu odnawialnego i nieodnawialnego, niezawodność obiektów złożonych. Reguły eksploatacji z uwzględnieniem prewencji i diagnostyki. Zasady analizy danych eksploatacyjnych. Organizacja procesów obsługowych, planowanie zasobów części zamiennych, regeneracji i modernizacji maszyn.

Efekty kształcenia – umiejętności i kompetencje: odwzorowania i wymiarowania elementów maszyn; projektowania i wykonywania obliczeń wytrzymałościowych układów mechanicznych z zastosowaniem komputerowego wspomagania projektowania maszyn; planowania i nadzorowania zadań obsługowych dla zapewnienia niezawodnej eksploatacji maszyn i urządzeń.

2. Kształcenie w zakresie nauki o materiałach

Treści kształcenia: Materia i jej składniki. Materiały techniczne naturalne i inżynierskie porównanie ich struktury, własności i zastosowania. Zasady doboru materiałów inżynierskich w budowie maszyn. Podstawy projektowania materiałowego. Źródła informacji o materiałach inżynierskich, ich własnościach i zastosowaniach. Umocnienie metali i stopów, przemiany fazowe, kształtowanie struktury i własności materiałów inżynierskich metodami technologicznymi. Warunki pracy i mechanizmy zużycia i dekohezji materiałów inżynierskich. Stale i odlewnicze stopy żelaza. Metale nieżelazne i ich stopy. Materiały spiekane i ceramiczne. Szkła i ceramika szklana. Materiały polimerowe, kompozytowe, biomimetyczne, inteligentne i funkcjonalne. Metody badania materiałów. Elementy komputerowej nauki o materiałach oraz komputerowego wspomagania projektowania materiałowego (CAMD – Computer Aided Materials Design) oraz doboru materiałów (CAMS – Computer Aided Materials Selection). Znaczenie materiałów inżynierskich w budowie i eksploatacji maszyn.

Efekty kształcenia – umiejętności i kompetencje: doboru materiałów inżynierskich do zastosowań technicznych.

3. Kształcenie w zakresie inżynierii wytwarzania

Treści kształcenia: Procesy wytwarzania i kształtowania własności materiałów inżynierskich. Procesy technologiczne kształtowania struktury i własności inżynierskich stopów metali. Obróbka ubytkowa i inne technologie kształtowania postaci geometrycznej. Obróbka powierzchniowa i cieplno-chemiczna. Technologie nakładania powłok i pokryć. Elementy inżynierii powierzchni. Cięcie termiczne oraz łączenie i spajanie. Przebieg i organizacja montażu. Technologia maszyn maszyny technologiczne. Procesy technologiczne w elektrotechnice, elektronice i optoelektronice. Podstawy organizacji produkcji. Projektowanie – w tym materiałowe procesów wytwarzania maszyn. Podstawy komputerowego wspomagania projektowania procesów technologicznych (CAM – Computer Aided Manufacturing).

Efekty kształcenia – umiejętności i kompetencje: stosowania technologii wytwarzania w celu kształtowania postaci, struktury i własności produktów.

4. Kształcenie w zakresie termodynamiki technicznej

Treści kształcenia: Podstawy termodynamiki. Obiegi termodynamiczne. Przemiany charakterystyczne. Równania stanu gazów rzeczywistych. Spalanie. Wymiana ciepła. Sprężarki. Silniki i siłowniki cieplne. Niekonwencjonalne źródła energii. Modelowanie procesów nierównowagowych i niestacjonarnych.

Efekty kształcenia – umiejętności i kompetencje: stosowania termodynamiki do opisu zjawisk fizycznych i modelowania matematycznego wymiany ciepła w procesach technologicznych.

5. Kształcenie w zakresie elektrotechniki i elektroniki

Treści kształcenia: Elektrostatyka i elektromagnetyzm. Obwody elektryczne prądu stałego i przemiennego. Moc i energia w obwodach jednofazowych i trójfazowych. Transformator. Maszyna szeregowa i bocznikowa prądu stałego oraz asynchroniczna i synchroniczna prądu przemiennego. Silniki elektryczne. Struktura i projektowanie napędu elektrycznego. Elementy półprzewodnikowe. Sposoby wytwarzania drgań elektrycznych, generatory. Układy prostownikowe i zasilające. Układy dwustanowe i cyfrowe. Układy elektroniczne, pomiarowe i napędowe. Elementy techniki mikroprocesorowej i architektura mikrokomputerów.

Efekty kształcenia – umiejętności i kompetencje: projektowania i analizy elektrycznych układów napędowych oraz układów sterowania maszyn.

6. Kształcenie w zakresie automatyki i robotyki

Treści kształcenia: Pojęcia podstawowe oraz właściwości statyczne i dynamiczne elementów oraz układów liniowych i nieliniowych automatyki. Obiekt regulacji i dobór regulatorów. Analiza pracy układu automatycznej regulacji. Jakość regulacji. Automatyka układów złożonych. Roboty i manipulatory: opis i budowa, kinematyka i dynamika manipulatorów, napędy. Podstawy sterowania i programowania robotów.

Efekty kształcenia – umiejętności i kompetencje: stosowania układów automatyki i automatycznej regulacji w technice.

7. Kształcenie w zakresie metrologii i systemów pomiarowych

Treści kształcenia: Podstawy teorii pomiarów. Przetworniki pomiarowe. Charakterystyki statyczne i dynamiczne przetworników pomiarowych i pozostałych elementów toru pomiarowego. Przetwarzanie i rejestracja sygnałów analogowych i cyfrowych. Analiza błędów statycznych i dynamicznych. Metrologia techniczna. Metody i narzędzia pomiarowe do oceny dokładności wymiarów. Metody i sposoby oceny struktury geometrycznej powierzchni. Współrzędnościowa technika pomiarowa. Pomiary elementów maszyn o złożonej postaci.

Efekty kształcenia – umiejętności i kompetencje: posługiwania się aparaturą pomiarową, metrologią warsztatową i metodami szacowania błędów pomiaru.

8. Kształcenie w zakresie  zarządzania środowiskiem i ekologii

Treści kształcenia: Koncepcja zrównoważonego rozwoju. Ochrona środowiska. Ekologia przemysłowa. Modele i definicje zarządzania środowiskiem i zarządzania środowiskowego. Systemy zarządzania środowiskowego. Systemy niesformalizowane i sformalizowane. Czystsza produkcja jako niesformalizowany system zarządzania środowiskowego. Systemy zarządzania środowiskowego według ISO serii 14000 i innych aktualnych krajowych i międzynarodowych norm. Ekonomiczne i prawne aspekty funkcjonowania systemów zarządzania. Najlepsze dostępne praktyki w technice i technologiach.

Efekty kształcenia – umiejętności i kompetencje: uwzględniania aspektów ekologicznych i ochrony środowiska przyrodniczego w rozwiązaniach technicznych i technologicznych.

IV. PRAKTYKI

Praktyki powinny trwać nie krócej niż 4 tygodnie.

Zasady i formę odbywania praktyk ustala jednostka uczelni prowadząca kształcenie.

V. INNE WYMAGANIA

1.      Programy nauczania powinny przewidywać zajęcia z zakresu wychowania fizycznego – w wymiarze 60 godzin, którym można przypisać do 2 punktów ECTS; języków obcych – w wymiarze 120 godzin, którym należy przypisać 5 punktów ECTS; technologii informacyjnej – w wymiarze 30 godzin, którym należy przypisać 2 punkty ECTS. Treści kształcenia w zakresie technologii informacyjnej: podstawy technik informatycznych, przetwarzanie tekstów, arkusze kalkulacyjne, bazy danych, grafika menedżerska i/lub prezentacyjna, usługi w sieciach informatycznych, pozyskiwanie i przetwarzanie informacji – powinny stanowić co najmniej odpowiednio dobrany podzbiór informacji zawartych w modułach wymaganych do uzyskania Europejskiego Certyfikatu Umiejętności Komputerowych (ECDL – European Computer Driving Licence).

2.      Programy nauczania powinny zawierać treści humanistyczne w wymiarze nie mniejszym niż 60 godzin, którym należy przypisać nie mniej niż 3 punkty ECTS.

3.      Programy nauczania powinny przewidywać zajęcia z zakresu ochrony własności intelektualnej, bezpieczeństwa i higieny pracy oraz ergonomii.

4.      Przynajmniej 50% zajęć powinny stanowić seminaria, ćwiczenia audytoryjne, laboratoryjne i projektowe, względnie pracownie problemowe.

5.      Student otrzymuje 15 punktów ECTS za przygotowanie pracy dyplomowej (projektu inżynierskiego) i przygotowanie do egzaminu dyplomowego.

ZALECENIA

1.      Wskazana jest znajomość języka angielskiego.

2.      Przy tworzeniu programów nauczania mogą być stosowane kryteria FEANI (Fédération Européenne d'Associations Nationales d'Ingénieurs).



lista kierunków:

Mechanika i budowa maszyn - studia inżynierskie


Polityka Prywatności